Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

$\operatorname{Bis}\left[N, N^{\prime}\right.$-bis(diphenylmethylene)-ethylenediamine- $\left.\kappa^{2} N, N^{\prime}\right] \operatorname{copper}(\mathrm{I})$ dichlorocuprate(I)

Valiollah Mirkhani, ${ }^{\text {a }}$ Sybolt Harkema ${ }^{\text {b* }}$ and Reza Kia ${ }^{\text {a }}$

${ }^{\text {a Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and }}$
${ }^{\mathbf{b}}$ Low Temperature Division, Faculty of Science and Technology and MESA+ Research Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
Correspondence e-mail: s.harkema@tn.utwente.nl

Received 5 April 2004
Accepted 20 May 2004
Online 22 June 2004
The 1:1 adduct of N, N^{\prime}-bis(diphenylmethylene)ethylenediamine ($\mathrm{bz}_{2} \mathrm{en}$) with copper(I) chloride, viz. $\left[\mathrm{Cu}\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}\right)_{2}\right]-$ $\left[\mathrm{CuCl}_{2}\right]$, has been synthesized. The structure contains cationic moieties of Cu^{I} ions (Cu on a twofold axis) coordinated to four N atoms of two $\mathrm{bz}_{2} \mathrm{en}$ molecules (in a distorted tetrahedron) and linear dichlorocuprate(I) anions (with Cu on an inversion centre). These cations and anions are packed in columns along b. The packing of the cation and anion columns involves a significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interaction and four short intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts, two of which are between cation columns.

Comment

The reaction of copper(I) halides, $\mathrm{Cu} X$, with nitrogen-based ligands (L) yields $\mathrm{CuXL} L_{n}$ adducts. The number of ligands bound to the monovalent Cu ion is influenced greatly by both the chemical nature and geometry of the ligand L and the type of halogen X (Zubieta et al., 1983; Kirchner et al., 1987; Alyea et al., 1990). In this context, we decided to examine the nature of the complex formed with an unconjugated diimine ligand. The title complex, (I), was prepared by reacting the bidentate ligand N, N^{\prime}-bis(benzophenone)ethylenediimine (bz z_{2} en) with CuCl .

(I)

The structure determination of (I) is consistent with the stoichiometry of a $1: 1$ copper(I) chloride-ligand adduct. The

Figure 1
A view of the cation and anion of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii.
atom disposition, however, is that of an ionic complex, the asymmetric unit of the structure comprising a bis(ligand)copper(I) cation and a dichlorocuprate(I) anion (Fig. 1). The Cu^{I} atom of the dichlorocopper(I) anion lies on a centre of symmetry, the anion thus being linear $[\mathrm{Cu}-\mathrm{Cl}=2.0832(8) \AA]$. The geometry of (I) (Table 1) is in good agreement with that

Figure 2
The crystal packing in (I), viewed along the b axis, showing the columns of cations and anions.
of several other established examples (Kaiser et al., 1974; Engelhardt et al., 1984).

The Cu atom of the cation is on a twofold axis, coordinated to four N atoms belonging to two symmetry-related $\mathrm{bz}_{2} \mathrm{en}$ molecules in a distorted tetrahedral geometry. The $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ bond angles found in (I) [85.98 (8), 109.50 (8), 134.7 (1) and $140.0(1)^{\circ}$] are similar to the corresponding data for ethylenediamine chelate rings (Engelhardt et al., 1984). The $\mathrm{Cu}-\mathrm{N}$ bond lengths [2.030 (2) and 2.099 (3) \AA] and angles are similar to those in the related bz_{2} en copper(I) perchlorate (2:1) complex, in which a perchlorate ion acts as counter-ion (Chowdhury et al., 2000). All the benzene rings in (I) are planar, with a maximum out-of-plane deviation for atom C26 of 0.010 (2) \AA. The acute angles made by the pairs of rings connected to the same N atom are 85.51 (9) and 80.26 (8).

The crystal packing of (I) involves columns of cations and anions packed along the b axis (Fig. 2). A significant interaction between the cation and anion columns is provided by a short $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contact (Table 2). No short $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are found between rings belonging to the same N atom. There are, however, four short intramolecular C $\mathrm{H} \cdots \pi$ interactions (Table 2), two of which (involving atoms H 4 and H 12) are between different cation columns.

A calculation using PLATON (Spek, 1990) indicated four equivalent solvent-accessible voids of $26 \AA^{3}$. The final difference Fourier synthesis did not show any significant electron density in these areas.

Experimental

The title compound was prepared by the reaction of CuCl and bz_{2} en (molar ratio 1:1) in a mixed acetonitrile-tetrahydrofuran (1:4) solution at room temperature. The solution was then concentrated under vacuum. Red crystals of (I) were formed by vapour diffusion of ether into the concentrated solution.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{CuCl}_{2}\right]$
$M_{r}=975.02$
Monoclinic, C2/c
$a=26.126$ (9) \AA
$b=9.337$ (5) \AA
$c=23.649(9) \AA$
$\beta=122.48$ (5) ${ }^{\circ}$
$V=4867(5) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
10026 measured reflections
5017 independent reflections
3291 reflections with $I>\sigma(I)$
$R_{\text {int }}=0.038$

$$
\begin{aligned}
& D_{x}=1.33 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=16.0-22.0^{\circ} \\
& \mu=2.39 \mathrm{~mm}^{-1} \\
& T=294 \mathrm{~K} \\
& \text { Block, red } \\
& 0.40 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=75.0^{\circ} \\
& h=-32 \rightarrow 32 \\
& k=0 \rightarrow 11 \\
& l=-29 \rightarrow 29 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: }<0.5 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.053$
$w R\left(F^{2}\right)=0.137$
$S=1.55$
5017 reflections
292 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 14$	$2.030(2)$	$\mathrm{Cu} 2-\mathrm{Cl} 3$	$2.0832(8)$
$\mathrm{Cu} 1-\mathrm{N} 17$	$2.099(2)$	$\mathrm{N} 14-\mathrm{C} 7$	$1.271(3)$
$\mathrm{N} 14-\mathrm{Cu} 1-\mathrm{N} 14^{\mathrm{ii}}$	$140.0(1)$	$\mathrm{N} 14-\mathrm{Cu} 1-\mathrm{N} 17^{\mathrm{ii}}$	$109.50(8)$
$\mathrm{N} 14-\mathrm{Cu} 1-\mathrm{N} 17$	$85.98(8)$	$\mathrm{N} 17-\mathrm{Cu} 1-\mathrm{N} 17^{\mathrm{ii}}$	$134.7(1)$
Symmetry code: (ii) $1-x, y, \frac{1}{2}-z$.			

Symmetry code: (ii) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$\mathrm{Cg} 1-\mathrm{Cg} 4$ are the centroids of rings $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 8-\mathrm{C} 13, \mathrm{C} 19-\mathrm{C} 24$ and $\mathrm{C} 25-\mathrm{C} 30$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{Cl}^{2}{ }^{\mathrm{i}}$	0.95	2.71	$3.652(4)$	173
$\mathrm{C} 26-\mathrm{H} 26 \cdots C g 1^{\mathrm{ii}}$	0.95	3.08	$3.922(4)$	148
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 2^{\mathrm{iii}}$	0.95	2.99	$3.812(4)$	146
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cg} 3^{\mathrm{ii}}$	0.95	2.79	$3.729(4)$	167
$\mathrm{C} 12-\mathrm{H} 12 \cdots C g 4^{\text {iv }}$	0.95	2.89	$3.791(4)$	158

Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, y, \frac{1}{2}-z$; (iii) $1-x, 1-y, 1-z$; (iv) $x,-y, \frac{1}{2}+z$.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$, and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: PROCESS in MolEN (Fair, 1990); program(s) used to solve structure: SIR (Burla et al., 1989); program(s) used to refine structure: $L S F M$ in MolEN; molecular graphics: ORTEPII (Johnson, 1976) and ORTEP3 (Farrugia, 1998); software used to prepare material for publication: bTABLE, PTABLE and CIF in MolEN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1057). Services for accessing these data are described at the back of the journal.

References

Alyea, E. C., Ferguson, G., Jenning, M. C. \& Zheng, X. (1990). Polyhedron, 9, 739-741.
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Chowdhury, S., Patra, G. K., Drew, M. G. B., Chattopadhyay, N. \& Datta, D. (2000). J. Chem. Soc. Dalton Trans. pp. 235-237.

Engelhardt, L. M., Papasergio, R. I. \& White, A. H. (1984). Aust. J. Chem. 37, 2207-2213.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1998). ORTEP-3 for Windows. University of Glasgow, Scotland.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kaiser, J., Brewer, G., Schroder, F. A., Taylor, I. F. \& Rasmussen, S. E. (1974). J. Chem. Soc. Dalton Trans. pp. 1490-1495.

Kirchner, R. M., Mealli, C., Bailey, M., Howe, N., Torre, L. P., Wilson, L. J., Andrews, L. C., Rose, N. J. \& Lingafelter, E. C. (1987). Coord. Chem. Rev. 77, 89-163.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Zubieta, J., Karlin, K. D. \& Hayes, J. C. (1983). Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, edited by K. D. Karlin \& J. Zubieta, pp. 97-108. New York: Adenine Press.

